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Abstract: Vision processing on traditional architectures is inefficient due to energy-expensive off-chip
data movement. Many researchers advocate pushing processing close to the sensor to substantially
reduce data movement. However, continuous near-sensor processing raises sensor temperature,
impairing imaging/vision fidelity. We characterize the thermal implications of using 3D stacked
image sensors with near-sensor vision processing units. Our characterization reveals that near-
sensor processing reduces system power but degrades image quality. For reasonable image fidelity,
the sensor temperature needs to stay below a threshold, situationally determined by application
needs. Fortunately, our characterization also identifies opportunities—unique to the needs of near-
sensor processing—to regulate temperature based on dynamic visual task requirements and rapidly
increase capture quality on demand. Based on our characterization, we propose and investigate
two thermal management strategies—stop-capture-go and seasonal migration—for imaging-aware
thermal management. For our evaluated tasks, our policies save up to 53% of system power with
negligible performance impact and sustained image fidelity.

Keywords: thermal management; image sensors; fidelity; continuous mobile vision

1. Introduction

Imaging and vision systems allow computing systems to sense real-world visual situ-
ations and to capture images for human consumption. Camera-enabled devices can now
perform a wide range of visual tasks such as detecting and tracking objects [1], constructing
spatial maps for augmented reality [2], and providing driverless navigation assistance [3].
Unfortunately, imaging requires high data rates, e.g., 2 Gbps for 4 K@30 fps, to transfer
pixel data from the image sensor to computational units. In traditional systems (Figure 1a),
where the computational units are separated from the sensor via long interconnects, e.g.,
ribbon cables, these data rates create bottlenecks to energy efficiency and processing. Thus,
current vision systems result in power profiles on the order of multiple watts. It has been
shown that state-of-the-art convolutional neural networks (ConvNets) consume over 1 W
of processing power to achieve a desirable performance of 30 frames per second (fps)
with low-resolution QVGA frames on ASICs [4,5]. The power consumption increases
significantly with higher resolution inputs and higher frame rates. To enable more exciting
use cases, imaging systems need order-of-magnitude energy efficiency improvements to be
able to analyze higher resolution image inputs while achieving higher frame rates.

This need for energy-efficiency has motivated recent investigations into 3-dimensional
stacked integrated circuit architectures (Figure 1b) to enable near sensor processing. In 2012,
the first prototype of stacked sensors became available [6], enabling rudimentary image
processing, such as demosiacing. Other architectural trends propose processing near
sensors; RedEye [7] and ShiDianNao [8] perform ConvNet inference near the sensor,
substantially improving energy efficiency of vision systems by 45%. In combination of
the two trends, i.e., integrating light-weight and heavy-weight processing into the sensor,
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future 3D-stacked sensors can layer the sensor, vision processor unit (VPU), and memory
in the same package.

DDR
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(a) Traditional vision pipeline.

VPU
DRAM
Sensor

SoC
CSI
I2C

3D Stacked
Sensor ~ Kbps

Chow chow dog?

(b) Near-sensor vision pipeline.

Figure 1. Due to energy-expensive interface data movements, traditional pipelines are inefficient.
Near-sensor processing helps greatly reduce data traffic promoting energy-efficiency. However, it
generates heat increasing sensor temperature, thereby resulting in noisy images potentially degrading
task accuracy.

Unfortunately, sensor temperature sensitivity prevents a full adoption of near-sensor
processing, creating thermal noise, e.g., dark current and read noise, in captured images.
In addition to generating less aesthetically pleasing images for human viewing, these noisy
images reduce the visual task accuracy of computer vision applications [9]. Furthermore,
poor lighting environments force the sensor to operate at high exposure and ISO (ISO
controls the sensitivity of an image sensor to light.) for better scene capturing, which
increases a sensor’s vulnerability to noise. Despite a plethora of CPU dynamic thermal
management (DTM) mechanisms [10–14], existing DTM techniques do not account for
imaging requirements, turning a blind eye to the transient imaging needs of near-sensor
processing. Thus, despite performance and energy benefits of near-sensor processing, the
temperature profile of visual computing limits stacked architectures in many situations.

While others have reported the thermal and noise implications of stacked-sensor
processing [15], there lacks a comprehensive end-to-end modeling framework to allow
characterization studies considering energy, thermal, and noise implications of near-sensor
processing workloads together. Thus, in Section 3, we design and validate one such
framework, aimed to assess thermal behavior of stacked-sensor architectures. We validate
our thermal models against image sensor measurements and find that our RC models
closely match with real measurements with an error margin of 0.1%. In addition to
confirming and characterizing relationships between near-sensor processing power and
sensor temperature, our modeling reveals a consequential insight: despite the coarse
thermal time constant for the sensor to settle to steady-state temperatures, removing near-
sensor power results in an immediate and significant reduction in transient junction temperature
(Junction temperature typically means the temperature of the hottest location in the die).
For example, for a 2.5 W system, the sensor temperature drops by roughly 13 ◦C within
20 ms when the processing is deactivated.

In Section 4, we build on characterized challenges to provision for imaging-specific
temperature management. We designed the Stagioni runtime to orchestrate temperature



Sensors 2021, 21, 926 3 of 20

management for near-sensor processing, including two temperature-aware scheduling
policies—stop-capture-go and seasonal migration—for effective near-sensor vision processing.
The policies aim to minimize system energy consumption and afford high-performance
computation and high fidelity capture. Stop-capture-go briefly suspends processing to
allow for on-demand high fidelity captures and resumes the processing after the cap-
ture. Seasonal migration occasionally shifts processing to a thermally isolated far-sensor
processing unit for high fidelity capture.

In Section 6, we then use an emulation framework to evaluate the effectiveness of
Stagioni’s mechanisms to manage a sensor temperature to suit imaging needs. We make
the following contributions:

• We develop and validate an end-to-end modeling framework for studying energy,
thermal, and noise implications of near-sensor processing. We use this framework to
characterize different implications of a typical 3D stacked near-sensor architecture.

• Motivated by the characterization findings, we design principles and propose novel
fidelity-driven runtime mechanisms for effective sensor thermal management.

• Through emulation-based evaluation, we show that Stagioni determines duty cycling
of near-sensor task processing to avoid fidelity issues that stem from thermal problems.
We find that Stagioni reduces average system power by 22–53%; actual savings depend
on specific power profiles and image fidelity needs.

Enabling high performance and high efficiency near-sensor processing would unlock
the potential for several vision/imaging applications, including sophisticated dashboard
cameras, continuous augmented reality tracking, and other futuristic use cases. Throughout
this work, we study the implications of near-sensor processing and evaluate the policies
around a life-logger case study. A wearable life-logger device chronicles important events
and objects in a person’s life. The device runs object detection and tracking algorithms
to continuously identify and locate objects in the scene. Meanwhile, the device performs
occasional captures upon detecting any important event, e.g., a person entering the scene.
This can form the basis for personalized real-world search engines, and assist those with
memory impairments or visual impairments.

2. Background and Related Work

The paradigm of near-sensor processing emerged in the 1990s to reduce the com-
munication and storage overhead of off-sensor processing. Early works [16] leveraged
physical properties to perform low-level image processing tasks, e.g., median filtering.
Later, researchers integrated image processing units [17] after the read-out circuits in the
imaging plane, outputting extracted image features. With advancement in 3D circuit in-
tegration, recent works [15] design 3D stacked image sensors, some of which include a
system-on-a-chip (SoC). Inside the SoC, sensor, processor, and memory are stacked into
the same package. This architecture performs high-level image processing tasks, such as
ConvNet-based classification. 3D stacked architectures have seen commercial advances.
These imagers still use the traditional CSI interface to communicate with the SoC. For
slow-motion capture, Sony [18] stacks a DRAM beneath the sensor layers. With local
memory, the sensor captures and buffers frames at 1000 fps, sending them across the slower
camera interface to the host. Samsung [19] uses a similar sensor for their recent Galaxy
phone. For surveillance, Sony [20] integrated a motion estimation block, microcontroller,
and DRAM in the 3D stacked sensor. More recently, Sony [21] integrated an AI vision
processor inside their recent sensor for performing in-sensor computer vision.

Though vision can be done through handcrafted feature analysis [22], the current trend
uses ConvNets for visual tasks on a wide range of architectures. High programmability,
performance, and energy-efficiency are desired to meet the rapid pace at which ConvNets
are evolving. General-purpose platforms built around GPUs provide programmable high
performance software libraries [23,24] to implement ConvNets at the expense of more
power, e.g., 60 fps at 10 s to 100 s of watts [25–27]. FPGAs provide performance and scala-
bility at reduced power. The state-of-the-art FPGA implementations [26,28,29] typically
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consume several watts of power. In recent years, we see the rise of domain specific proces-
sors such as Myriad2 [5] that provide programmable SIMD capabilities on a RISC processor.
This brings down the power to a few watts [5], but at the cost of performance, e.g., 3 fps.
Meanwhile, academic ASICs [8,30,31] provide energy-efficiency and performance for Con-
vNets. However, benefits are bottlenecked by DRAM accesses. For example, Eyeriss [30]
achieves 278 mW@35 fps for AlexNet. When scaled for VGG16 [32], performance drops
to about 10 fps within the same power budget. For reasonable performance, scalability,
and mobility, the system power profile ranges from 1 to 15 W. Placing these VPUs near
the sensor and solving temperature challenges would unlock substantial improvements in
performance and energy-efficiency through near-sensor processing.

Image sensors are susceptible to different types of noise due to imperfections in
lighting, sensing elements, and imaging circuitry. Sources of noise can be grouped into
fixed-pattern noise and temporal noise. Fixed-pattern noise arises due to non-uniform
sensitivities of photodiodes to light. As it remains constant over time, conventional strate-
gies read it once and subtract it later to eliminate its effect. Notably, there is also dark
current (leakage from transistors) that exponentially increases with temperature. In con-
trast to fixed-pattern noise, temporal noise sources vary with each capture. Temporal noise
sources include read noise and dark current shot noise, which exhibit strong dependence
on temperature. All electronic noise sources, e.g., readout elements, amplifiers, are grouped
together as read noise, which has a variance of kT/C. This noise is due to random thermal
activity of electronic charge carriers. Dark current shot noise also stems from similar
phenomenon happening in photodiodes; high temperatures trigger randomness in the
photodiode charge carriers, thereby inducing more noise in images. Unfortunately, thermal
noise cannot be fully suppressed using signal processing techniques without generating
imaging artifacts [33]. The only solution is to manage sensor temperature.

For efficient thermal management, different techniques have been explored for multi-
core processors. Stop-and-go [34] suspends the execution of a thread, for a while, when
a core on which it is running gets overheated and resumes its operation once the core
cools down. Heat-and-run [14] technique migrates the thread from a hotter core to a cooler
one to allow the hotter core to cool down. Traditional DTM techniques are designed to
keep the processor power within a thermal design power (TDP). We are inspired by the
same core mechanisms—stop-go and seasonal migration—for power and temperature
reduction. In contrast to the existing works, we redesign these mechanisms to fulfill
dynamic imaging needs.

Recent works report temperature issues in 3D stacked image sensors. Amir et al. [15]
stack a DRAM and a deep neural network (DNN) processor beneath the sensor layer.
They report that sensor temperature can increase due to DNN computation, resulting
in higher noise and lower ConvNet accuracy. Lie et al. [35] report similar issues for
their 3-layer stack architecture with a image compression unit integrated inside the stack.
Similar to earlier works, we report similar issues for our characterized 3D stacked image
sensor. However, previous works provide design time solutions, e.g., statically partitioning
computation to execute partial ConvNets on the sensor and the rest on the host. Our work
is complementary, providing runtime solutions for thermal management.

3. Modeling Energy, Thermal, and Fidelity Implications of Near-Sensor Processing

In this section, we construct a modeling framework to examine the implications of
using stacked integration to place a VPU layered underneath the sensor for near-sensor
processing. Our estimates are based on a suite of parameterizable energy, temperature,
and noise models of different hardware structures of a 3D stacked system. To develop our
models, we leverage datasheets, ITRS roadmaps, and commercial simulation software to
produce accurate estimation of different thermal characteristics of 3D stacked sensors. We
also validate these models through sensor hardware measurements.

To better appreciate the insights offered by near-sensor processing, we study various
system implications around our life-logger case study. Our studies confirm that near-
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sensor processing minimizes off-chip data movement, thereby substantially reducing
interface power and overall system energy consumption. With near-sensor processing in
our case study, we can reduce the system power of ResNet-based image classification by
52%. We also relate near-sensor processing power to image fidelity through temperature
simulation, confirming that image fidelity degrades over time with additional near-sensor
processing power. We observe that removal of near-sensor processing power via throttling
or computation offloading leads to rapid drops in sensor temperature, e.g., reducing
temperature by 13 ◦C in 20 ms. We can exploit this observation to allow the sensor to
operate at higher temperatures and lower image fidelities for energy-efficient vision, e.g.,
continuous object detection, while switching to low temperature operation for high-fidelity
image capture when an application needs high quality photographs of a particular object.

3.1. Energy Analysis of Near-Sensor Processing

Near-sensor processing reduces energy-expensive data movement across the inter-
connects between different chips. Here we examine energy profiles of vision pipelines,
comparing traditional and near-sensor pipelines. Our energy models provide coarse esti-
mation; actual numbers will depend on factors such as architectural decisions and patterns
of execution.

Energy of Vision Pipeline Components

Traditional pipelines operate across chips to connect a variety of subsystems: camera,
processing unit, memory. The camera chip connects to processing units on the system-on-
chip (SoC) through a standard camera serial interface (CSI) for data transfer and an I2C
interface for control and configuration. Meanwhile, the SoC buffers image frames with
DRAM through an external DDR interface.

Using regression models on measurements and reported values, we construct a coarse
energy profile model to motivate the need for near-sensor processing. As shown in Table 1,
we find that sensing, processing, and storage consume 100 s of pJ per pixel. On the other
hand, communication interfaces consume over 3 nJ per pixel.

Table 1. Energy-per-pixel of various components.

Component Energy (pJ/pixel)

Sensing 595

Communication (Sensor-SoC) 900

Communication (SoC-DRAM) 2800

Storage (Read) 283

Storage (Write) 394

Sensing requires an energy of 595 pJ/pixel [36,37], mostly drawn from three compo-
nents: pixel array, read-out circuits, and analog signal chain, which consume 25 pJ/pixel,
43 pJ/pixel, and 527 pJ/pixel, respectively. DRAM storage on standard mobile-class
memory chips (8 Gb, 32-bit LPDDR4) draws 677 pJ/pixel for writing and reading a pixel
value [38]. This roughly divides into 283 pJ/pixel for reading and 394 pJ/pixel for writing.
Communication over CSI and DDR interfaces incur 3.7 nJ/pixel, mostly due to operational
amplifiers on transmitters and receivers. We measure the interface power dissipation [39]
on 4-lane CSI interfaces and LPDDR4 interfaces by inputting several data rates. From this
information, we construct a linear-regression model to estimate the energy per pixel to be
0.9 nJ/pixel over CSI and 2.8 nJ/pixel over DDR. For computation, we gather reported
power dissipations of various ConvNet architectures from the literature.

To illustrate the efficacy of near-sensor processing, in Table 2, we use our energy
models to estimate the system power numbers of traditional and stacked-sensor processing
for state-of-the-art ConvNet models. We combine reported computation values with
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modeled sensing, storage, and communication energy to estimate system power dissipation.
At 1920 × 1080 and 34 fps, and using ResNet for inference on the SoC VPU, the modeled
system consumes 2.7 W.

Table 2. Deep neural network (DNN) models and corresponding power profiles.

DNN Model (VPU Arch) Frame Rate (fps) Trad. Sys Power (W) NSP Sys Power (W)

AlexNet (Myriad2) 12 3 1.86

mobileNetSSD (Myriad2) 11.8 1.92 0.9

GoogLeNet (Neurostream) 83 3.13 1.81

ResNet50 (Neurostream) 34 2.67 1.34

On-chip data movement is known to be significantly more power efficient than off-
chip data movement by six orders of magnitude [40]. Advances in near-sensor processing
leverage this for energy-efficiency gains, as shown in Figure 1b. Near-sensor processing
moves the DRAM into the sensor to eliminate off-chip DDR movement, and moves the
VPU into the sensor to reduce the CSI interface data rate. Thus, the output of the sensor
can be reduced from a few MB to a few bytes. This information can be sent across efficient
low data rate interfaces, e.g., I2C. Altogether, when applying our energy profile models to
the near sensor processing pipeline, we find that the VPU near sensor system consumes
1.3 W, thereby yielding 52% savings over traditional architectures.

3.2. Thermal Analysis of Sensor Processing

Though tight integration yields energy efficiency and performance benefits, near-
sensor processing generates heat at the sensor through thermal coupling between tightly
integrated components. While dynamic thermal management for CPU is only concerned
with keeping peak power draw below a TDP, we pay close attention to temperature patterns,
as transient temperature behavior affects image fidelity. Conduction is the dominant
heat transfer mechanism in integrated circuits. To model temperature dynamics, we use
simple thermal resistance-capacitance (RC) modeling [41] techniques to determine stacked
sensor characteristics.

3.2.1. Deriving the Component Values in the RC Model

Figure 2 shows a typical structure of a 3D stacked sensor package and its RC model.
The sensor, DRAM, and VPU layers are stacked on top of each others, connected to each
other, e.g., using through-silicon-vias. The top of the stack opens to the surroundings
through microlenses, while the bottom sits on a substrate that opens to the printed circuit
board. Mobile-class image sensors omit heat sinks or cooling fans, due to their size, weight,
and placement challenges. The layers consume power when active, which dissipates as
heat. We primarily consider vertical heat transfer; vertical resistances are several orders
of magnitude smaller than the lateral resistances of convective heat transfer. We obtain
component values of the layers through analytical and empirical approaches.

Figure 2c shows different RC component values derived for our model. Previous
works report layer dimension values of typical 3D stacked image sensors [15]. In these
works, the layer thickness ranges in the order of 1–10 s of microns, while the layer’s area
ranges from 10–100 s of mm2. The ITRS roadmap provides layer dimensions and material
property constants ρ and c to define the guidelines for semiconductor fabrication. From
these, we derive the thermal resistance R = ρt/A and thermal capacitance as C = ctA
where A is the layer’s cross sectional area and t the thickness.

Package capacitance can be deduced empirically by observing the temperature trace of
an image sensor chip while subjecting the sensor to thermal stress. We construct regression
models from the temperature trace of an OnSemi AR0330 smartphone-class image sensor
to derive package capacitance. Finally, termination thermal resistance depends on the
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properties of the casing and board. Sensor companies make these values available through
datasheets. We use such provided values for typical packages directly in our model.

Board

VPU

DRAM

Sensor

Substrate

(a) Cross-section of the 3D stack.

Tamb

Rca

Tamb

Pv

Ps

Pd

Rjc

Rsd

Rdv

Rjb +  Rba

Cp

Cs

Cd

Cv

(b) RC model of stack. (c) RC values of different components.

Figure 2. Using the well-known duality between thermal and electrical phenomena, thermal modeling of stacked sensors
can be performed by analyzing an equivalent RC circuit.

Off-sensor power does not affect sensor temperature. While processing far from the
sensor, the off-sensor VPU and SoC components do not influence the sensor temperature.
Even in tightly integrated systems, e.g., smartphones, the sensor and SoC reside on two
different boards and communicate over a ribbon cable. As a result, the sensor and SoC
are nearly in thermal isolation. That is, any increase in temperature of one component
will not cause appreciable change in temperature of the other. We verify this effect by
running a CPU-bound workload on SoC on a Google Nexus smartphone while keeping
the camera idle. Our thermal camera instruments do not report any associated rise in
camera temperature with an induced rise in SoC temperature. Thus, in our study, we do
not consider off-sensor thermal coupling effects.

3.2.2. Simulation-Based Thermal Analysis

Through LTSpice simulation on our RC models, we estimate the thermal behavior
of near-sensor processing architectures. We evaluate temperature profiles as the sensor
operates in two different modes: NSP mode, in which power dissipation is representative
of capturing image frames and processing vision workloads near the sensor, and CAP
mode, in which power dissipations are representative of capturing image frames and either
dropping frames or transmitting them to the SoC. With various execution patterns, we
can simulate the thermal behavior of the sensor as the system operates among different
sensor modes. Previous analysis has reported that we can safely ignore spatial variations in
temperature if the chip power density is within 20 W cm−2 [42], as is the case in NSP mode.
Power density, which is the power dissipated over the chip area, measures the degree of
spatial non-uniformities in temperature. The physical dimensions of our 3D stacked image
sensor combined with the power profile of our case study results in a power density of
16 W cm−2. Therefore, we do not consider the spatial variations of temperature inside the
stack for our modeling near-sensor processing architectures.

We model static power as a voltage dependent current source as shown in the follow-
ing equation, which is the popular model used in computer architecture literature [43].

Pleakage = Pre f ∗ eβ∗(T−Tre f ) (1)

We choose reference temperature as 300 K and obtain beta value of 0.0075 from the
ITRS roadmap.

Inter-layer resistances are at least two orders of magnitude smaller than termination
resistances. This results in negligible drop across the resistor, leading to minuscule temper-
ature gradients between layers. For example, for 1 W of VPU power, the sensor, DRAM,
and VPU will be at 60.7 ◦C, 60.9 ◦C, and 61.0 ◦C, respectively. Thus, we combine the layers
and model the sensor temperature as a single RC point. Generally, reducing VPU power
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dissipation corresponds directly to temperature decrease. The RC-based model shows that
reducing near-sensor power from 1 W to 100 mW results in a temperature drop of 5 ◦C. In
addition, a higher ambient temperature leads to raised steady-state temperatures. With
static power, we find that the steady-state temperatures rise even further.

Thermal time constants govern the transient temperature of the stacked image sensor.
As the thermal capacitance of a chip package is often several orders of magnitude greater
than that of a die, the thermal time constant of the package predominantly guides the
trajectory of temperature to steady-state, taking 10 s of seconds to reach a steady-state
temperature. With static power, we find that the temperature rise is steeper. The coarser
thermal time constant allows dynamic temperature management policies ample time to
form decisions, e.g., altering temperature by changing near-sensor power draw.

Notably, near-sensor power dissipation raises the transient temperature of the sensor
die above the package temperature. This is because the heat source is on the sensor die
itself, dissipating heat through the package into the ambient environment. Consequently,
reducing power dissipation rapidly reduces the gap between sensor die transient tempera-
ture and package temperature, as shown in Figure 3. The speed of the temperature drop
is governed by the sensor junction die time constant, which is on the order of millisec-
onds. Prior works, e.g., [10–14], have found similar temperature characteristics of the large,
sudden drop for CPUs. However, CPU thermal management can neglect fine-grained
temperature variations because its goal is to govern the processor junction temperature
below a threshold. As a result that transient temperature affects image fidelity, these rapid
temperature drops—such as the charted 13 ◦C drop in 20 ms—provide unique opportunities for
dynamic thermal management for on-demand image fidelity. We further discuss this in Section 4.

(a) Junction temperature trace with
downward vertical lines indicating
the immediate jump.

(b) Zoomed-in version of the jump:
the junction temperature drops by
13°C within 20 ms

Figure 3. When disabling NSP, a rapid drop in junction temperature occurs within 20 ms, due to
junction time constants.

Due to the lack of configurable stacked sensors, we use an OnSemi mobile class
camera [44] with an on-chip temperature sensor to validate our thermal insights. We
find that the validation results follow our RC model prediction. In particular, we collect
the real-time temperature trace from the on-chip thermal sensor while configuring the
sensor in preview and low-power modes. We validate the relationship of temperature to
power dissipation. The sensor reaches a temperature of 35.0 ◦C under a dynamic power
dissipation of 250 mW.

When we use the power dissipation as input to our model, the steady-state tempera-
ture is estimated to be 34.8 ◦C, within 0.06% of real measurement. When we switch from
the preview mode to the low-power mode, reducing the power dissipation to 150 mW,
we observe a steady-state temperature of 31.6 ◦C. The model prediction is 31.4 ◦C, within
0.06% of real measurement.
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We also observe the sudden temperature drop due to removal of near-sensor power
dissipation. Upon transition to the lower power state, we see 30% of the temperature
reduction occurring within 30 ms. Our RC model predicts the junction time constant to
be 20 ms, which is close to what we observe through hardware measurement. We addi-
tionally validate the sudden temperature drop characteristic for higher power dissipation
differences, leveraging a mobile SoC [45] and SnapDragon profiler [46], which also profiles
battery power draw. We notice substantial drop of 15 ◦C in when there is a 3 W power
removal by turning off a neural network-based object detection application.

3.3. Image Fidelity Implications of Temperature

While raised temperatures cause reliability and packaging issues for integrated circuits,
they introduce another problem for image sensors: noise. The influence of noise on vision
tasks has been widely reported. Dodge et al. [9] find that neural networks have difficulty
predicting semantics of an image when challenged by image noise. Similar findings
from Amir et al. [15] find that image classification accuracy degrades with increase in
temperature. Thus, reliable vision demands images of reasonable fidelity.

The fidelity bar is often high for images captured for human consumption. For exam-
ple, if a set of dashcam images is to be used in an auto insurance claim, the images need to
have superior quality to obtain maximal information for decision-making. While denoising
can help mitigate fidelity issues, denoising algorithms often create imaging artifacts which
also impair perceived image quality. Thus, as images are required to fiducially represent
the real physical world, imaging fidelity needs are more stringent than vision-based needs.

The sources of image noise are theoretically well-understood (Section 2). However, to
understand the practical relationship between temperature and image quality on commer-
cial sensors, we perform thermal characterization on a 3 Mp OnSemi AR0330 sensor [47]
connected to a Microsemi SmartFusion2 FPGA [48]. The AR0330 sensor includes noise
correction stages inside the sensor, as is common in commercial sensors. We use a heat
gun to raise sensor temperature and capture raw images in a dark room setting while
monitoring sensor temperature with an FLIR One thermal camera.

3.3.1. Noise Is more Prevalent at High Temperatures

Figure 4 charts a trend: sensors are particularly susceptible to noise above a particular
temperature value. This is despite the presence of noise correction stages inside the sensor.
We observe that the correction blocks bring the noise under control but only for lower
temperature settings. However, for high temperatures, the denoising fails to exercise
control on noise minimization. Notably, this knee shifts with exposure and analog gain
settings, presumably due to noise amplification. For instance, at high exposure and analog
gain, which correspond to low light situations, sensors start to become thermally sensitive
even at low temperatures, e.g., 52 ◦C. To adapt to experienced conditions, the sensor’s
thermal management should be adaptive to varying lighting conditions.
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Figure 4. Variance of noise, expressed in pixel intensities, and task accuracy showing sensitivity to temperature, exposure,
and ISO.
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3.3.2. Noise Visibly and Substantially Impairs Quality

Thermal noise is visibly apparent on images, whether in low light or bright light
conditions. For example, Figure 5 shows images captured under daylight conditions at
different temperatures. We can observe the graininess in the hotter image due to the
strong influence of noise. Paired with the noisy images, the histograms represent the pixel
intensity distribution of an image. The wider peaks in the distribution signify the variance
of pixel intensity, while the mean of the peaks represent average intensity. We can observe
that the histogram of the hotter image shifts to the right, increasing pixel intensity due
to dark current. We also observe that the variance of the pixel intensity increases, due to
increased thermal noise.

(a) Image at 44 ◦C (b) Image at 92 ◦C
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Pixel intensity
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0.02
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ity

44 C
92 C

(c) Image histograms
Figure 5. Two images captured at different temperatures and their histograms. The hotter image is brighter and grainier,
due to the influence of thermal noise. This is also reflected in the shift in mean and variance.

Thermal noise also substantially impairs the vision task accuracy, which we study
around te image classification task. As shown in Figure 4b, we find that the task accuracy
degrades with more image noise. For our experimentation, we feed noisy images into
the MobileNet neural network and evaluate the accuracy of the inference by comparing
the results against the ground truth labels. To generate noisy images, we inject Gaussian
thermal noise to the validation dataset of ImageNet. We repeat this experiment for other
classification networks such as SqueezeNet and tiny-ResNet and notice similar trends.

3.4. Motivational Observations

To summarize, we have the following insights for NSP:

• Near-sensor processing promotes system energy-efficiency, but also increases
sensor temperature.

• Raised sensor temperatures aggravate thermal noise.
• Smaller (ms) sensor junction time constants facilitate an immediate sensor tempera-

ture drop.
• Fidelity needs are highly dynamic and depend on environment, e.g., lighting and

ambient temperature.
• Imaging demands more fidelity, but vision tasks are also susceptible to noise, especially

in low light.

These observations motivate the need for novel dynamic thermal management for
near-sensor processing.

4. Thermal Management for Near-Sensor Processing

Our characterization shows that near-sensor processing increases system energy
efficiency, but sacrifices image fidelity due to increased sensor temperatures. This raises
a natural question: Can we leverage near-sensor processing to create efficiency benefits while
maintaining sufficient image fidelity for vision and imaging tasks?Driven by this, we develop
novel mechanisms that can efficiently regulate sensor temperature for continuous and
on-demand image fidelity needs. In our design, these mechanisms are governed by a
runtime controller, which we call Stagioni. Stagioni could be designed in a multitude
of ways, e.g., a dynamically linked library, a runtime OS service, or dedicated hardware.
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In our implementation and evaluation, Stagioni is a runtime OS service that sits on the
near-sensor processor, allowing the SoC to sleep.

Dynamic temperature management for microprocessors is a mature research area,
as we summarize in Section 2. However, traditional processor DTM mechanisms are not
designed to suit imaging needs. Rather than simply being limited by TDP, fidelity is
impaired by the immediate transient sensor temperature while capturing. Furthermore,
thermal management for near-sensor processing should adapt to the situational needs
of the vision/imaging application, e.g., allowing higher temperatures when in brighter
environments and rapidly dropping temperature when high fidelity is required.

To account for near-sensor processing temperature management, we modify tradi-
tional DTM techniques to introduce two mechanisms that quell image quality concerns,
while striving to optimize for system power and performance. (1) Stop-capture-go: Tem-
porarily halt near-sensor processing for thermal regulation and on-demand high fidelity
capture. (2) Seasonal migration: Occasionally migrate processing to a thermally isolated
far-sensor VPU for thermal regulation and on-demand high fidelity capture.

4.1. Design Principles for Sensor Thermal Management

To design thermal management mechanisms that are effective for near-sensor pro-
cessing, we introduce three core principles: (1) Situational temperature regulation: The
mechanism should confine sensor temperature within a threshold that suffices for imaging
fidelity needs. (2) On-demand fidelity: Upon application request, the mechanism should
quickly drop the temperature to desired capture temperature for high fidelity imaging.
(3) Duty cycle governs system efficiency. Here, we discuss these in detail.

4.1.1. Situational Temperature Regulation

As we discuss in Section 3, vision tasks have varying fidelity needs, which are sensitive
to camera settings, e.g., ISO and exposure, and lighting situation, e.g., bright conditions.
This translates directly to a simple upper bound for temperature:

Tsensor < Tvision (2)

Thus, temperature management must be cognizant and respectful of immediate vision
task requirements in situational conditions to provision for effective vision accuracy.

4.1.2. On-Demand Fidelity

While vision processing can operate on low fidelity images, certain applications may
require high fidelity images on demand, e.g., life logging capture after object detection. Such
capture must be immediate, before the object leaves the view of the camera. Fortunately,
as we characterized, sensor temperature rapidly drops with the removal of near-sensor
power, i.e., by entering CAP mode. For example, when the sensor drops its near-sensor
power consumption from 2.5 W to 100 mW, the sensor drops in temperature by 13.2 ◦C.
We experimentally observe that sufficient temperature drop (98.2%) can be achieved within
a time of four time constants, which we define as tjump = 4 × RCdie. In our simulation,
this amounts to 20 ms. Temperature management can leverage this drop to provision for
on-demand high fidelity.

The temperature drop is directly proportional to the disparity between the near-sensor
power before and after power reduction: Tjump = α(PNSP − PCAP). We find that for our
modeled sensor, every 1 W causes a 5.5 ◦C temperature jump, i.e., α = 5.5 °C W−1. When
constrained by a latency deadline, e.g., to immediately capture a moving object or to meet
a synchronization deadline, the achievable jump within the latency deadline is a fraction
of the time it takes to drop: Tlatency

jump = Tjump × (e−tlatency/RCdie). Thus, to provision for
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predicted fidelity needs and latency needs of an application, the temperature management
mechanism can set reduced bounds:

Tsensor < Timaging + Tlatency
jump (3)

4.1.3. System Power Minimization through Duty Cycle

While removal of processing power can regulate temperature and provide on-demand
high fidelity captures, the scheduling of operation should also strive to optimize for average
system power. We can characterize this through the duty cycle and frequency of switches
between NSP and CAP modes. For duty cycle d, switching frequency fswitch and energy
per switch Eswitch, average system power can be modeled as:

Pavg = d × Psystem
NSP + (1 − d)× Psystem

CAP + fswitch × Eswitch (4)

In minimizing average power, there is a notable tradeoff between the duty cycle
and the frequency of switches. Spending more time in CAP mode allows the sensor to
cool down, increasing the length of time spent in NSP mode as well. On the other hand,
spending less time in CAP mode allows the sensor to spend a greater proportion of time in
NSP mode, promoting energy savings through the duty cycle, at the expense of number of
switches. Notably, time spent in each mode must be a multiple of time spent capturing
an image. It is not possible to switch to CAP mode for a partial frame duration while an
image is being captured. For our implementation, which has minimal switching overhead,
higher duty-cycles tend to provide favorable average system power profiles.

4.2. Stop-Capture-Go

The traditional stop-go DTM technique regulates processor temperature by halting
execution through clock gating. For near-sensor processing, we can similarly put the sensor
in CAP mode, gating near-sensor units for some time before resuming NSP mode. The
resulting “temporal slack” allows the sensor to regulate capture fidelity at the expense of
task performance. Stop-go is architecturally simple, requiring only the ability to gate the
clock or power of components.

Unlike traditional stop-go, our proposed stop-capture-go requires unique modifica-
tions for near-sensor processing. First, frequently clock gating the entire sensor is not
advisable; interruptions to the camera pipeline create capture delays on the order of multi-
ples of frames. Instead, the system will clock gate the near-sensor VPU and DRAM, putting
the sensor into CAP mode. Second, rather than being governed by TDP, the temperature
regulation will trigger as the sensor reaches a situational upper bound specified by the
design principles, such that Tsensor < Tvision and Tsensor < Timaging + Tlatency

jump . Third, the
application can request an execution halt to achieve on-demand fidelity. For this, the sensor
enters CAP mode to retrieve the frame.

The amount of “stop” time—the amount of time the processor is halted—is an im-
portant policy parameter. During the stop time, the system will “drop” frames, failing to
process them, although they may be captured. Elongated stop times allow a sensor to cool
down, reducing the number of switches. Stop times can be detrimental, as contiguously
dropped frames may contain important ephemeral visual information. Thus, if a system
wishes to prioritize a continuity of visual information, stop time should be reduced. In
our simulated study, we find that the minimal stop time of 33 ms (one frame time) is
sufficient to cool the sensor from 87 to 74 ◦C, enabling sufficient temperature regulation
and on-demand fidelity.

Due to the architectural simplicity of stop-capture-go, system overhead is mini-
mal, promoting continuously low system power. However, frequent frame drops im-
pair visual task performance. Thus, stop-capture-go is suitable for systems that de-
mand low power but are not performance-critical and/or systems that require minimal
architecture modifications.
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4.3. Seasonal Migration

While stop-capture-go is a simple policy for temperature regulation and high-fidelity
captures, it degrades application performance by halting execution. Towards minimizing
performance loss, we investigate seasonal migration for near-sensor processing. Seasonal
migration shifts the processing to a thermally isolated computational unit, allowing con-
tinuous computing. As we model in Section 3, spatial thermal isolation between the
sensor and SoC allows thermal relief. Enabling seasonal migration comes at the expense
of duplicated computational units near and far from the sensor, but effectively regulates
temperature without sacrificing performance.

As shown in Figure 6, seasonal migration is governed by two temperature boundaries:
Thigh and Tlow. In the efficiency phase, triggered when the sensor reaches a temperature
below Tlow, it will enter NSP mode, performing near-sensor processing for system efficiency.
In the cooling phase, triggered when the sensor reaches a temperature above Thigh, it will
enter CAP mode, performing off-sensor processing on the SoC, allowing the sensor to
cool down. The alternation between phases allows the system to balance efficiency with
temperature. For on-demand fidelity, the system enters the cooling phase regardless of
sensor temperature.
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Figure 6. Transient response of seasonal migration mechanism with 77% duty cycle to confine sensor
temperature within thermal boundaries (Thigh and Tlow).

Thigh and Tlow are important policy parameters, controlling the balance of efficiency
and temperature. Thigh forces sensor temperature regulation, and thus should be set to shift
to situational needs:

Thigh = min(Tvision, Timaging + Tlatency
jump )

Meanwhile, the gap between Thigh and Tlow controls the system efficiency implications
of the policy. As a result that it takes more time for the sensor temperature to bridge a
larger gap, larger gaps decrease the frequency of switches, while smaller gaps increase
the frequency of switches. The Thigh − Tlow gap also controls the duty cycle of the system.
When the desired sensor temperature range is closer to steady-state NSP temperature than
steady-state CAP temperature, smaller gaps produce favorable duty cycles, spending more
time in NSP mode. As shown in Equation (4), the average system power is a function of
this duty cycle, balanced against the energy overhead and frequency of switches. Thus,
Tlow should be chosen to create a gap that optimizes average system power.

As we defined earlier, the duty cycle is the proportion of time spent in NSP mode. For
seasonal migration, the relationships can be derived from standard charging models. After
the rapid drop or rise in temperature Tjump, which takes approximately tjump amount of
time, the sensor follows an RC charging curve towards the steady-state temperature of the
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NSP or CAP mode. Altogether, this can be used to model duty cycle d and frequency of
migration fmigration.

twarming = RC × ln
(TNSP

steady − (Tlow + Tjump)

TNSP
steady − Thigh

)
+ tjump

tcooling = RC × ln
( (Thigh − Tjump)− TCAP

steady

Tlow − TCAP
steady − Tjump

)
+ tjump

d = twarming/(twarming + tcooling)

fmigration = 2/(twarming + tcooling)

Depending on implementation, seasonal migration could suffer from the switching
latency and energy overhead resulting from state transfer and synchronization in shifting
processing among computational units. However, reducing this migration overhead is a
well-studied problem in distributed systems [49]. Several reported techniques mitigate
migration latency, e.g., pre-copy-based migration [50], which promote smooth execution
performance while incurring energy overhead by keeping both computational units on
while preparing for migration. Similarly, in our implementation, prior to migration, we
prepare the system by preemptively starting up the target computational unit and initiating
its context so it is prepared for execution. Consequentially, there is only a minimal switching
overhead of 100 µs, which is negligible in comparison to ms-scale image capture times.

5. Experimental Methodology

Since there are no readily available programmable 3D stacked image sensors, we
use emulation techniques to implement Stagioni mechanisms. Our emulation framework
operates on characterized energy, noise, and thermal models and reports system metrics
such as system power and performance. We implement Stagioni as a runtime controller
and integrate it into the emulation setup to study execution patterns of different policies.

5.1. Emulated Architecture

We model a 3D stacked sensor architecture in our emulation framework. For its
sensing element, we emulate the fidelity characteristics of an AR0330 [47] which is a
typical mobile-class image sensor with sufficient number of pixels for providing high-
quality images. For its storage element, we emulate the power profile of a 4 Gb LPDDR4
DRAM, which is commonly seen in commercial 3D stacked sensors [18] for slow-motion
video capture. Finally, for its processing element, we emulate the power characteristics
of a Myriad2, a vision co-processor found in mobile devices [51,52], capable of neural
network processing and feature-based processing, and also Neurostream [4], another
recent candidate architecture for energy-efficient vision processing. In our emulation, the
resulting stacked sensor connects to an ARM-based mobile-class SoC through a standard
5 Gbps CSI interface. We assume that the SoC also contains a vision co-processor, i.e.,
Myriad2/Neurostream, to which it can offload the tasks.

5.2. Emulation Setup

While we can use our modeling to evaluate thermal and energy behavior, the runtime
behavior of Stagioni and its adaptiveness to different ambient conditions can only be
assessed through hardware and software implementation. While we could study the
mechanisms on any mobile platform such as SnapDragon and TX2, we choose an FPGA
platform because it has programmable fabric where we can synthesize a neural processing
unit to emulate a vision co-processor. To this end, we build an FPGA-based emulation
platform based off two ZCU102 boards. One of them emulates the stacked sensor, while the
other emulates the SoC. Both employ hardware-accelerated vision processing through the



Sensors 2021, 21, 926 15 of 20

CHaiDNN library [53]. We use 1 Gbps Ethernet for communication, simulating a standard
CSI interface that has similar bandwidth characteristics.

The Stagioni controller takes the type of policy and associated model parameters as
inputs. The parameters generate a temperature-dependent mode schedule that governs
task execution at runtime. The controller also handles high fidelity requests and services
them to deliver high quality images through appropriate mechanisms. During CAP mode
for stop-capture-go, the controller gates the execution of the neural network invocation.
For seasonal migration, the controller performs message passing over Ethernet for state
transfer and implements producer-consumer queues for synchronization. During NSP
mode, the controller gates the SoC FPGA.

5.3. Workloads

We evaluate the life-logger use case which performs continuous vision with occasional
imaging upon detection of interesting events. For our vision tasks, we study two forms of
vision: (i) image classification, identifying scenes, and (ii) object detection, locating objects
in a scene. For each of these tasks, as shown in Table 2, we choose a variety of the state-
of-the-art DNN models with different input, memory, and computational requirements to
stress different elements in our stacked architecture.

We use SNR to gauge image quality and frame drops for performance overhead. In
addition to stop-capture-go and seasonal migration, we consider full-far sensor processing
(status quo) for comparison.

In imaging, an SNR of 20 dB is considered as acceptable quality under well-lit condi-
tions. However, the bar is higher for more challenging conditions, including environments
where fiducial detail is important. This can be seen in sensor data sheets [47] where manu-
facturers design cameras to deliver higher SNR values, e.g., 35 dB for excellent performance
under low-light conditions. Therefore, to capture all real-world scenarios, we use range of
fidelity choices {35 dB, 26 dB, 20 dB}, and a “don’t care” scenario in which the application
continuously performs vision without any on-demand high fidelity imaging.

We evaluate a wide range of temperature and lighting conditions. For evaluating am-
bient temperature effects, we use values from 20 ◦C to 40 ◦C. Meanwhile, lighting translates
into different camera settings, i.e., exposure and ISO. We use the flexible CapraRawCam-
era [54] camera app to automatically determine appropriate camera settings based on
the scene lighting. We use the following camera settings for three sensor illuminations.
(a) Outdoor daylight (32,000 lux): Exp.: 16 ms, ISO: 100. (b) Indoor office light (320 lux):
Exp.: 32 ms, ISO: 400. (c) Dimly lit office light (3.2 lux): Exp.: 64 ms, ISO: 800.

6. Evaluation Results and Analysis

In this section, we investigate the effectiveness of our proposed policies in meeting
fidelity demands of various vision tasks around the life-logger use case.

6.1. Duty Cycle

Stagioni determines optimal duty cycles, based on power profile and imaging fidelity
requirements. Figure 7 shows a sensitivity analysis of duty cycle for a range of power
dissipations across different fidelity needs. This range of power profile can represent
different executions on Myriad2-like architecture or on ASIC, GPU, and FPGA architectures
with different performance expectations. We can see that the duty cycle varies widely, due
to the strong interplay between the fidelity and the power profile. While the application’s
power profile determines the steady-state temperature, the fidelity requirement determines
the placement of thermal boundaries in the temperature trace. This can result in a broad
range of duty cycle based on where the thermal boundaries are situated in the temperature
response, which we explain below.

If thermal boundaries are placed above the temperature response, Stagioni operates
at 100% duty cycle, i.e., in NSP mode all the time. This is relevant as the steady-state
temperatures of an application power profile are below thermal limits, e.g., <1 W On the
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other hand, the boundary placement within the gradual rise and steeper fall region of
the temperature trace means that the system spends more time in NSP mode than CAP
mode, resulting in duty cycles greater than 50%. If the boundaries lie in the steeper rise
and gradual fall region, this time, the system spends more time in CAP mode than NSP
mode, thereby leading to duty cycles <50%.
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Figure 7. Influence of fidelity and NSP power on duty cycle.

6.2. System Power Consumption

Here, we examine system power during emulated workloads. We find that stop-
capture-go and seasonal migration substantially reduce system power compared to the
status quo. Figure 8 shows the system power for different applications for different policies,
across different fidelity needs. We see that stop-capture-go consumes the lowest amount
of power among all the policies. This is because stop-capture-go operates entirely on the
near-sensor VPU for whole program execution in both NSP and CAP modes. In contrast,
seasonal migration operates on far-sensor VPU during CAP mode and on near-sensor VPU
during NSP mode. Thus, it consumes more power than stop-capture-go but less than
full-far policy.
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Figure 8. For seasonal migration, raised duty cycles decrease system power, while it increases the system power for
stop-capture-go.

System power changes with fidelity demands due to change in duty cycle; high fidelity
pulls down the duty cycle, reducing efficiency. This is evident in seasonal migration; we
see higher power for higher app fidelities (higher SNR). For stop-capture-go, a lower duty
cycle increases VPU sleep time, while dropping frames from processing. Therefore, we
see power decrease as we go from low to high app fidelity. For full-far policy, there is no
change in system power, as it does not create fidelity issues.

6.3. Overhead

We discuss policy execution overhead for seasonal migration and stop-capture-go
policies. As the system executes seasonal migration, it switches between near-sensor and
far-sensor VPUs. However, through the use of practically available techniques, task offload
overhead can be kept to a minimum. We use one such technique called pre-copy migration
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which preemptively transfers the state before the migration deadline. Consequentially, one
needs to only take care of synchronization between the VPU and SoC, which involves only
basic handshaking operations incurring minimal overhead. We measure this switching
overhead on our emulation setup to be 100 µs, which is negligible in the context of the
frame capture time, i.e., 33 ms. Ergo, seasonal migration has no effect on the performance
of the vision application.

For stop-capture-go, stop time determines the number of frame drops which could
potentially lead to performance hit. The actual performance loss depends on the duty
cycle and effective frame rate when the system executes stop-capture-go will be scaled
by a factor of the duty cycle which has interesting implications. If the duty cycle is very
high, then the performance loss would be minimal, e.g., 30 fps with 98% duty cycle leads
to an effective 29.4 fps. On the other hand, a lower duty cycle can lead to a substantial
performance loss, e.g., 30 fps with 40% duty cycle leads to 12 fps, which is a reduction
by more than 50%. Therefore, even though stop-capture-go consumes the lowest system
power, it can hit the performance of the vision application when near sensor power and/or
fidelity requirements are high.

6.4. Situational Awareness

One feature of Stagioni that differs from traditional DTM techniques is situational
awareness to dynamic settings. Stagioni smoothly adapts thermal boundaries to match
ambient temperature and lighting situations.

Ambient temperature determines steady-state temperatures, which determine warm-
ing and cooling times. Higher ambient temperatures push TNSP

steady far from Tlow and push

TCAP
steady close to Thigh. This forces the warming phase to take a steeper rise and the cooling

phase to take a gradual fall in the exponential curve. Thus, increasing ambient tempera-
ture decreases duty cycle and vice-versa. In simulation, decreasing ambient temperature
increases rise times and reduces fall times in the simulated temperature trace, as shown in
Figure 9a.
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Figure 9. Increasing ambient temperature (a) and/or decreasing ambient illumination (b) pulls TNSP
steady

away from Tlow and pushes TCAP
steady close to Thigh. Stagioni shifts thermal boundaries to smoothly

adapt to different ambient conditions.

Lighting dictates fidelity requirements, changing Thigh and Tlow. Stagioni adapts to
these changes. We simulate change in illumination to generate a trace with random juggling
between lighting scenarios. We provide this trace as input to our runtime and collect the
temperature trace. Figure 9b shows the temperature trace overlaid with Thigh and Tlow. We
can observe the smooth variation of temperature with light intensity.

7. Conclusions

Near-sensor processing can unlock energy-efficient imaging and vision, as demon-
strated by recent academic and industrial efforts. However, we show that doing so hampers
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sensor fidelity due to thermal noise, thereby limiting the adoption of near-sensor process-
ing. Our characterization reveals that immediate drop in temperature can be realized
within a short duration. We use this observation to design principles for managing sensor
temperature for efficient temperature regulation and high fidelity temperatures, while
optimizing for system power. To implement the policies, we design and implement the
Stagioni runtime to manage sensor temperature, while fulfilling imaging needs. For our
evaluated tasks, the policies deliver system power savings ranging from 22–53% with little
performance loss. Stagioni also quickly and smoothly adapts the thermal boundaries based
on ambient conditions. Our work is the first runtime solution for stacked sensor thermal
management. We foresee our work as early steps to imaging-aware DTM techniques.
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