Rhythmic Pixel Regions: Visual sensing architecture for flexible spatiotemporal
resolution towards high-precision visual computing at low power
Extended Abstract

Venkatesh Kodukula, Alexander Shearer, Van Nguyen, Srinivas Lingutla, and Robert LiKamWa
Arizona State University, Tempe, AZ, USA
{vkodukul, acshearl, vinguyl9, slingutl, likamwa} @asu.edu

1. Motivation

High-precision visual computing on traditional frame-
based architectures creates energy-hungry memory traf-
fic. Visual sensing at high spatiotemporal resolution can offer
high precision for vision applications, which is particularly
useful to capture the nuances of visual features, such as for
augmented reality, face identification, and object classification.
Unfortunately, capturing and processing high spatiotemporal
visual frames generates energy-expensive memory traffic due
to the overwhelming data rate of pixel throughput e.g., re-
quiring nearly 12 Gbps for 4K uncompressed frames at 60
fps. On the other hand, low resolutions can reduce memory
throughput, but also prohibit high-precision visual sensing.

However, our intuition is that not all parts of the scene need
to be captured at a uniform resolution. Far and fast moving
objects and areas of a frame may require high spatiotemporal
resolutions, but close and/or static objects can be captured with
lower resolutions without impairing accuracy. We propose that
rhythmic pixel regions with independently controllable spa-
tial and temporal resolutions can yield high-precision visual
computing at energy-efficient data rates. Around this idea, we
design a visual computing pipeline that discards unnecessary
pixels before they reach DRAM memory, while preserving
frame access abstractions for app developers.

Unlike visual computing based on a few Regions-of-Interest
(ROIs), rhythmic pixel regions leverage encoded data repre-
sentations that scalably allow for the capture of hundreds of
regions, with a multitude of independently foveated spatiotem-
poral resolutions. Our architectural support allows developers
to dynamically define the region selection, allowing them to
drive the rhythmic pixel region configuration by visual fea-
tures that are already being computed for augmented reality,
face detection, and/or object recognition workloads.

2. Limitations of the State of the Art

Multi-ROI cameras do not scale with number of regions:
Many image sensors are capable of selecting a ROI for read-
out [4]. However, to the best of our knowledge, these sensors
support at most 16 regions, and those regions are typically cap-
tured at a uniform resolution and frame rate. In contrast, our
architectural support for rhythmic pixel regions can uniquely
support hundreds of regions with different spatio-temporal
resolutions, allowing for rich configurability and adaptivity to
match the variability of the spatial environment.
Event-driven cameras do not scale with resolution:

Event-driven cameras focus their sampling on pixels that
change their value [1]. However, the per-pixel circuitry has
a motion detection module making it spatially expensive,
thereby limiting the frame resolution and spatial precision, e.g.,
to 128 x 128 pixels. In contrast, our architecture works with
off-the-shelf mobile cameras which can support higher resolu-
tions and can flexibly deduce the regions based on developer-
defined responses to visual information.

Video compression techniques are memory-inefficient:
Commercial video codecs, such as H.264, reduce redundant
information by leveraging estimated motion information from
frame-to-frame [2]. However, such entropy-coding compres-
sion techniques require the frame — or multiple copies of the
frame — in memory before compression can be done. This in-
curs the memory overhead of visual computing that rhythmic
pixel regions strives to avoid.

3. Key design nuggets

The rhythmic pixel region architecture centers around the idea
of: (i) encoding pixel streams to reduce the pixel data stored in
memory, and (ii) decoding the pixel streams for vision appli-
cation usage. We prioritize hardware and software support for
flexibility and scalability to uniquely enable support for hun-
dreds of regions with independent spatiotemporal resolutions.

3.1. Rhythmic pixel encoder architecture

The rhythmic pixel encoder module intercepts the incoming
pixel stream from a conventional image sensor pipeline and
uses developer-specified region labels to encode pixels into an
encoded frame before writing them to DRAM. As shown in
Fig. 5, the encoder selectively samples pixels from the camera
stream based on whether the pixel is in any of the regions
and matches the region’s specified spatiotemporal resolution
stride.

Raster-scan optimized sampling: A naive approach
would fully parallelize the region label checking process,
which would exponentially increase the resource footprint,
limiting encoder’s scalability. Our approach is to instead ex-
ploit the raster-scan patterns of the incoming pixel stream to
reduce and reuse the work of the region search.

There are three key techniques: (a) Search-space reduc-
tion: For a given row, there is a smaller subset regions that
are relevant — where the y-index of the pixel is inside of the
y-range of the region and matches the vertical stride. (b) Spa-
tial locality: Within a row, if we find that if a pixel belongs to
aregion, we can apply the same comparison result for the next



region width number of pixels. (c) Pre-sorting: We also sim-
plify the process of finding relevant regions for a row through
sorting the regions in the order of y-indices. This can be done
either at the application level or at the OS kernel level.

3.2. Rhythmic pixel decoder architecture

The rhythmic pixel decoder module fulfills pixel requests
from the vision application. This request path is managed
by a pixel memory management unit (PMMU), as shown in
Fig. 6. The return path returns the pixel values to the vision
application through a Resampler Unit.

Pixel Memory Management Unit: The PMMU works
in the same spirit as a traditional memory management unit
(MMU) but has the responsibility of translating decoded (“orig-
inal”) pixel addresses to encoded pixel addresses stored in
DRAM. It has three key elements. The out-of-frame handler
forwards the transaction if it is requesting a pixel; otherwise, it
will bypass, allowing for standard memory access. The trans-
action analyzer analyzes the encoding sequence of the transac-
tion and generates different sub-requests based on where the
encoded pixels are present, as we explain below. These sub-
requests are fed to a translator which performs the conversion
from orignal to encoded space.

Resampling Unit: The interpolation engine uses a FIFO
to buffer data packets received from a pixel-based DRAM
transaction. To prepare a pixel value to send back to the
original request, the engine either dequeues the pixel data
from the FIFO, re-samples the previous pixel (in the case
of stride), or samples a black pixel, based on the combined
bitmask information.

3.3. Developer support for rhythmic pixel regions

From the point of view of the processing unit — CPU, visual
processing unit, or GPU — the rhythmic pixel region architec-
ture preserves the addressing scheme of the original frame-
based computing. This allows fully transparent use of existing
vision software libraries and hardware accelerators, with no
modification necessary.

We develop runtime support to allow the developers to
flexibly specify region labels. A runtime service receives
function calls to send the region label list to the encoder via
memory-mapped registers. Region label lists can be set on a
per-frame basis or persist across frames.

Policy-based usage of rhythmic pixel regions Developers
can build various policies that autonomously guide the region
selection. A feature-based policy can use proxies such as
feature scale and displacement to estimate the spatial and
temporal resolutions of regions.

The overall process of policy generation and modifying the
application around that policy could be cumbersome for a
general application developer. To reduce the developer burden,
we propose two tiers of developers: Policy makers can design
feature-based, accelerometer-based, or other forms of adaptive
policies that dynamically select region labels. Policy users

can select policies from a pool to serve their application needs
while reaping the benefits of rhythmic pixel regions.

4. Implementation and key results

FPGA based implementation: We integrate our hardware

and sofware extensions on top of Xilinx’s reVISION stack

platform [3] which implements an end-to-end video pipeline.

We evaluate three workloads: (a) Visual SLAM (b) Face de-

tection (c) Human pose estimation.

Evaluation Results: We summarize important results:

* Rhythmic pixel regions use is flexible, supporting large num-
bers of regions, e.g., 1000 regions for V-SLAM with inde-
pendent resolutions

* Vision apps are still reliable, with algorithms operating with
minimal and controllable loss in accuracy

 Using rhythmic pixel regions is memory friendly. With early
pixel discard, we find a significant reduction (roughly 50%)
in memory throughput for our evaluated workloads.

* Our hardware extensions are scalable, supporting increas-
ing numbers of regions without needing significantly more
transistors

* Qur extensions are performant, as the end-to-end system
pipeline runs in real-time, servicing 2 pixels per clock.

¢ Our hardware extensions are power-efficient, consuming a
few 10’s of mW on an FPGA target

5. Why ASPLOS

With a focus on architectural support through our en-
coder/decoder hardware extensions and software runtime sup-
port, rhythmic pixel regions emphasizes the synergy of two
areas ("AS" and "OS") to fit with ASPLOS interests.

6. Citation for Most Influential Paper Award

This paper introduces rhythmic pixel regions, a paradigm that
enables unprecedented visual precision on mobile systems
by eliminating energy-expensive memory throughput where
spatiotemporal resolution is not needed by visual tasks, while
preserving detail where necessary. The presented architectural
solutions enable developers to specify the capture and process-
ing of hundreds of visual regions with independent spatiotem-
poral resolution that match the needs of visual algorithms and
apps. As such, this work is a fundamental enabler for high-
precision, energy-efficient and performant visual computing
for augmented reality, object recognition, face detection, and
other futuristic use cases.

7. Revisions

Compared to a previous submission, we have redesigned ar-
chitectural elements to promote lightweight and scalable en-
coding/decoding. We have added more comparative baselines
(multi-ROI cameras and video compression) to the evaluation.



References

(1]

(2]
(3]
(4]

Gallego, Guillermo and Delbruck, Tobi and Orchard, Garrick and Bar-
tolozzi, Chiara and Taba, Brian and Censi, Andrea and Leutenegger, Ste-
fan and Davison, Andrew and Conradt, Jorg and Daniilidis, Kostas and
others. Event-based vision: A survey. arXiv preprint arXiv:1904.08405,
2019.

Taian Richardson. H.264 and MPEG-4 Video Compression: Video
Coding for Next-generation Multimedia. 2004.

Xilinx. reVISION Getting Started Guide 2018.3 (UG1265). https:
//github.com/Xilinx/reVISION-Getting-Started-Guide.
ximea. Multiple ROI cameras. https://www.ximea.com/support/
wiki/allprod/Multiple_ROI.


https://github.com/Xilinx/reVISION-Getting-Started-Guide
https://github.com/Xilinx/reVISION-Getting-Started-Guide
https://www.ximea.com/support/wiki/allprod/Multiple_ROI
https://www.ximea.com/support/wiki/allprod/Multiple_ROI

	Motivation
	Limitations of the State of the Art
	Key design nuggets
	Rhythmic pixel encoder architecture
	Rhythmic pixel decoder architecture
	Developer support for rhythmic pixel regions

	Implementation and key results
	Why ASPLOS
	Citation for Most Influential Paper Award
	Revisions

